• 行业新闻

防火涂料热降解的测试研究技术
发布者: 发布时间:2013-07-12 08:50:10 阅读:

   防火涂料是指涂敷于可燃性基材表面,能降低被涂材料表面的可燃性、阻滞火灾的迅速蔓延,或是涂敷于结构材料表面,用于提高构件耐火极限的一类物质。近年来,防火涂料的研究进展很快,研究者不仅采用多种技术针对于防火涂料的耐火性能进行测试,以优选防火涂料配方;而且还采用多种新型技术对防火涂料的热降解过程进行测试,试图揭示防火涂料热降解的过程,或研究改性材料对防火涂料产生增效作用的原因。

  由于以成炭催化剂/炭化剂/发泡剂和以可膨胀石墨(EG)为阻燃体系的膨胀型防火涂料是目前防火涂料的主要研究方向,因此本文主要列举近年膨胀型防火涂料的部分研究成果,综述用于研究防火涂料热降解过程的新型测试研究技术。

  用于防火涂料热降解的测试研究技术

  热分析法

  热分析是连续改变物质的温度,测量物质的物理性质与温度关系的技术。热分析虽是一种古老的分析技术,但因为随着电子技术的进步,操作变得更简单、分析精度更高和数据处理更加快捷,所以在防火涂料热降解机理研究中被广泛采用。

  目前的热分析技术很多,其中热重(TGA)、差热分析(DTA)、差示扫描量热(DSC)在防火涂料热降解研究中使用最为普遍。TGA是在程序 控制温度下,测量物质的质量与温度的关系,得到降解过程中质量变化及失质量速度,进而可以初步对防火涂料的热稳定性予以评估。DSC是在程序控温下,测量 输入到物质和参比物的功率差与温度的关系的技术,可以用来测定防火涂料热降解过程中的反应热、转变热及反应速度等。DTA是在程序升()Td(线)下 一步脱水生成焦磷酸和多聚磷酸所产生的吸热峰;PER364.8360.8℃开始分解,温峰为341.3℃;MEL300.1381.2℃出现一个较窄的吸热峰,温峰为357.9℃。由此可见,APPPERMEL的分解温度接近,便于协同成炭。对APP/PER体系采用DSC测 试,202.6℃开始,体系出现一系列的吸热或放热现象,推测热降解过程包括APP分解产生水和氨气,同时发生交联反应形成多聚磷酸,它再与PER发生 酯化反应,PER也直接与APP发生磷酯化反应,而稳定性差的酯经过脱水炭化等复杂反应,最后形成炭质层结构。

  研究改性材料对膨胀防火涂料的作用

  近年来,不少研究针对APP/PER/MEL膨胀防火涂料残炭率低和残炭热稳定性低等问题,采用多种材料进行了改性研究。在研究过程中,热分析是必需的测试技术。

  在研究聚氨酯(PU)涂料中添加可膨胀石墨(EG)的效果时,采用TGDTG表明,EG小幅提高了残炭 率,从微商热重(DTG)分析上看,EG的添加,没有改变PU涂料的热降解过程。在APP/PER/MEL膨胀防火涂料中添加10%200 EG,采用DTATG研究其影响,发现EG对防火涂料的DTA曲线没有改变,但使涂料800℃的残炭率增加了10%。这些研究都表明EG是一种不参与 防火涂料热降解化学反应,仅产生物理协同效应而增效的材料。在研究纳米颗粒氢氧化镁、氢氧化铝及二氧化硅对APP/PER /MEL膨胀防火涂料的影响,在研究三氧化钼对APP/PER/MEL膨胀防火涂料残炭的影响时都用到了热分析技术,目的在于表明改性材料 对基准防火涂料残炭率、热降解温度及热降解过程中吸热/放热过程的影响。

  热分析技术还可以对防火涂料的热降解进行热分析动力学研究,即采用多重扫描TGDSC得到一系列的曲线图,可对防火涂料分阶段进行讨论,计算 热降解过程的表观活化能,并可推导热降解机理模型均对膨胀型防火涂料的热分 解动力学进行了尝试性研究,但是由于膨胀防火涂料的热降解过程包括化学反应、扩散、成核等多类机理,而每类中又涉及不同的机理模型,因此要准确和科学地研 究膨胀防火涂料的热分解动力学,还需要进一步探讨和研究。

  综上所述,热分析法具有多方面的优点,能够表征阻燃体系各组分的热降解过程、涂料的残炭、改性材料对涂料热降解残炭和吸热/放热的影响,这也表 明热分析是一种科学的、可用于防火涂料改性材料研究的测试技术。但是该技术对于分析防火涂料热降解的机理仅停留在推测的层次,若要对防火涂料的热降解机理 进行深入的研究,必须辅以其他的测试技术。

  红外吸收光谱法

  分子均具有各自的固有振动,而将改变波长的红外线(IR)连续照射到分子上时,与分子固有振动能相对应的红外线将被吸收,则可得到相应于分子结 构的特有光谱(红外吸收光谱法)。将红外吸收光谱法用于防火涂料的热降解研究,可以依靠对光谱和化学结构的理解,通过与标准谱图的对照,灵活运用基团特征 吸收峰及其变迁规律,逐步推导残炭物质的正确结构,从而推测防火涂料的热降解过程。

  研究防火涂料热降解的历程

  对防火涂料样品在不同温度下进行凝聚相的动态FT-IR测试,可以推断防火涂料热降解过程中键的断裂和新键的生成,并可以由此推断炭质层的稳定 性,或用来说明改性材料是否与防火涂料发生了化学反应。研究了PU涂料和PU/EG涂料,通过对20450℃不同 温度下两种涂料的红外光谱图进行对比分析后,得到EG并未改变PU涂料的热降解产物的FT-IR特征光谱的结论,因此说明EG并未与PU涂料发生化学反 应,而只是物理作用,与热分析DTA的结论相吻合。

  与热分析技术联用分析热降解机理

  热分析技术与红外联用有两种情况。其一为对残炭凝聚相的分析,对不同温度段下的残炭进行FT-IR分析,对应于该温度段下的热失质量,分析热降解机理;其二为对热分解气体的分析,结合不同温度段时的热失质量情况,分析热降解机理。

  采用热分析技术对XKJ饰面型防火涂料进行分析,发现在150250℃之间,失质量16.96%,并在204.34℃出现第一个峰值,推测为苯丙乳液基料的某些基团放出小分子;340450℃阶段,失质量约38%,并在397.38℃出现第二个峰值,推测聚磷酸铵分解出大量 的氨和水,生成偏磷酸和磷酸,并促进季戊四醇和有机物脱水炭化,同时三聚氰胺分解出氨气;450℃以后,失质量缓慢,表明在此阶段之前生成的膨胀炭质层 具有较好的热稳定性。DSC测试表明,377116℃417.02℃出现两个放热峰,推测有新的物质或基团生成。对该涂料的残炭物质进行红外光谱测 试,发现500cm-11105cm-1PO3-4的特征吸收峰,表明残炭物中含有磷,说明磷化物在固相中能通过热解过程中的架桥反应,促进某些有机 物发生剧烈的无规则降解,促进季戊四醇的脱水成碳;1000cm-1附近为P—O—C的特征峰,1630cm-1为与三嗪相连的—NH2的特征峰,表明在 450℃下磷、氧、氮等元素进入炭质层,形成了热稳定性较好的炭质层,使450℃以后失质量率很小。

  采用TG-FTIR联用测试技术,对膨胀涂料进行了测试,根据TG-DTG可以将膨胀涂料的热降解过程分成若干阶段,对各阶段的分解气体进行FT-IR测试分析,可以得到气体释放种类及强度相对于温度(或时间)的关系,以此来推测热降解过程中不同温度段的降 解机理。具体测试分析过程。将信息进行处理,得到各释放气体随温度的变化曲线,对应于TG曲线,即可说明在不同温度段下产生的气体产物,见图,并可借鉴此结果推断可能发生的反应。

  采用TG-FTIR测试膨胀防火涂料的热降解过程

  光电子能谱分析法

  光电子能谱(XPSESCA)是以X射线作为激发源的光电子能谱分析法。其主要原理是物质受光作用会发生光电效应而放出电子;原子中不同的电 子具有不同的结合能(即将电子从所在能级移到真空能级所需的能量)。在实验中只要测出电子的动能,就可以确定电子的结合能,然后通过对照未知样品的峰值和 所发表的文献的结合能的值,对未知样品所含的元素进行鉴定,同时通过波形解析获得有关官能团种类和数量的信息。并可能由此推导防火涂料中改性成分对残余炭 质层热稳定性的影响。

   XPS技术虽然可以推定炭质层中含有的各元素组成及结合的比例关系,但是其推导结果为一结合能可能对应多种官能团,因此要推断残炭物质的准确结构,还需要结合红外光谱的测试结果。

   扫描电镜分析

  防火涂料残炭物质的形貌,可用扫描电镜(SEM)观测。该技术是利用细聚焦的电子束在样品表面逐点扫描,用探测器收集在电子束作用下,样品中产 生的电子信号,再把信号转变为能反映样品表面特征的扫描图像。扫描电镜具有可进行微区成分分析、分辨率高、成像立体感强和视场大等优点,在防火涂料研究方 面使用越来越广泛。

  采用SEM可以测试残炭物质的形貌(是否均匀、致密或疏松等),观察炭层中孔的状态及大小,观察炭质层表面物质的形貌。在使用纳 米SiO2改性APP/二季戊四醇(DPER)/MEL膨胀防火涂料时,发现纳米SiO2在炭质层上形成了类似陶瓷质的保护层,使涂料的耐高温性得以改 善在采用MoO3EG改性APP/PER/MEL防火涂料时,发现EG使炭质层中具有大量的蠕虫状结构,其尺寸较小的规则的多孔状 结构可有效地降低炭质层的导热系数;EG产生的炭质层易于氧化,添加MoO3,蠕虫状炭层上覆盖了一层熔融物质,该物质阻止了热和氧气向EG 形成的炭层扩散,因此表现出MoO3EG良好的协同性,提高了涂料的耐火极限。

   X射线衍射分析法

  X射线衍射分析(XRD)的基本原理是X射线照射晶体,电子受迫振动产生相干散射;同一原子内各电子散射波相互干涉形成原子散射波。由于晶体内 各原子呈周期排列,因而各原子散射波间也存在固定的相位关系而产生干涉作用,在某方向上发生相长干涉,形成衍射波。利用衍射波的基本特征———衍射线在空 间分布的方位(衍射方向)和强度,与晶体内原子分布规律(晶体结构)的密切关系,来实现材料成分、结构分析。该技术在防火涂料研究中既可以用来研究原材料 的物相,也可以研究防火涂料热降解残炭物质的晶体组成。如掺有TiO2的膨胀防火涂料,其炭质层表层有白色的稳定物质,通过采用XRD分析,确定该物质为 TiP-O7和锐钛型TiO2的混合物。采用MoO3改性的膨胀防火涂料,XRD分析其炭质层中含有MoO2MoOPO4,可能是提高防火涂料残 炭率的主要原因[17]

   锥形量热仪法

  该技术是以氧消耗原理为基础的新一代聚合物燃烧测定仪,氧消耗原理是指每消耗1g的氧,材料在燃烧中所释放出的热量是13.1kJ,且受燃烧类型和是否发生完全燃烧影响很小。只要能精确地测定出材料在燃烧时消耗的氧量就可以获得准确的热释放速率。该技术可以获得多种燃烧参数:释热速率 (RHR)、总释放热(THR)、有效燃烧热(EHC)、点燃时间(TTI)、烟及毒性参数和质量变化参数(MIR)等。锥形量热仪法由于具有参数测定值 受外界因素影响小、与大型试验结果相关性好等优点,而被应用于阻燃领域的研究中,也可以用于防火涂料的热降解研究。

  利用锥形量热仪(CONE)实验获得可膨胀石墨防火涂料和传统的膨胀型防火涂料的热失质量速率(MLR)、热释放速率 (HRR)、有效燃烧热(EHC)、比消光面积(SEA)CO2CO和点燃时间(TTI)等参数,对阻燃性能、烟毒释放、阻燃机理进行了对比研究。相 比而言,EG防火涂料的pkHRR/TTITHR下降,在火灾中的危险性减小,防火涂料的阻燃性能更为优异;EG防火涂料保护基材烟、毒释放较少,符合 阻燃材料少毒的要求,安全性能更好。这也与EG在其他材料的阻燃研究中的结果吻合,表明了CONE技术研究防火涂料热降解的科学性。

  动态黏度测试技术

  因为膨胀防火涂料的膨胀炭层中包含有固体物()和液体物(焦油),所以可表现出黏-弹性特点。黏-弹性材料具有复杂的动态黏度,它的贮存模量 G′与在弹性变形下贮存的能量相关;而损失模量G″则与黏性能量消耗相关。G″G′的比值确定另一参数———消耗因子,可以表示材料抵抗变形的能力。研究这些参数可以作为温度或应力的函数,用来对不同材料的燃烧性能(特别是膨胀过 程),提供重要信息。当温度升高且处于一应变之下,聚合物材料可能产生变形或裂开,一旦裂缝产生,氧气和热量/质量将在基体材料和炭质层之间扩散和传输, 从而导致基体材料的快速降解。因此,对于炭质层,应该是产生变形而不开裂,才能保证炭质层的防护功能。动态黏度测试技术在膨胀防火涂料中使用时,既可以表征膨胀过程,又可以测试炭层的强度。

  该测试技术是采用热扫描黏度计来监控材料随温度或时间随炭层的变化,并最终确定涂料炭层弹性的和黏性的行为。该装置,在两平行 板间装有黏度计,干燥的涂料被置于两板之间,板初始间距1mm。为使涂料与平板之间具有很好的粘附力,并保证测试结果的有效性,需要采用合适的测试条件: 应变5%,10rad/s,升温速度10℃/min,测试温度范围20500℃,压力2000Pa。  

在测试PU/EG涂料时,发现体系的黏度变化为三个阶段。在200300℃,黏度小幅度上升,其原因为此阶段涂料降解产生了气态物质、液态物 质,与固态物质共存,产生膨胀炭质层,从而造成黏度的小幅度上升;300400℃,黏度大幅度上升,原因为炭质层形成后,碳化过程继续进行; 400500℃阶段,因为炭质层开始破坏,所以黏度下降。该测试结果与板间间距和TGA的测试结果吻合。

  炭质层强度测试过程。炭质层的强度与板间距(Gap)的关系可以更好地用来分析热降解条件下膨胀炭质层的性能,该条件既不同于燃烧条件,也不同于炭质层冷却后的条件,所以显得更为重要。

  其他测试技术

  随着对防火涂料热降解机理研究的不断深入,会有不同的测试技术被使用。如对热降解气体的种类和相对含量的测试技术;核磁共振技术用来分析防火涂料的原材料和炭质层。

   结语

  因为防火涂料性能在火灾或高温下的性能直接关系到人身和财产的安全,所以对其高温下的热降解过程的深入测试和研究有助于让我们了解防火涂料的作 用机理,为优选配方和改性材料提供理论依据。在防火涂料热降解的研究中,测试技术,特别是多种测试技术联用是非常必要的,将在今后的研究中发挥其必然的作用。

 


<< 上一篇:环境友好型防火涂料成为防火涂料工艺发展的主流 下一篇 >>:防火涂料的涂层厚度
打印本页 || 关闭窗口

友情链接: 外墙乳胶漆 防霉乳胶漆 真石漆 防火涂料 钢结构防火涂料 保定网站建设 饰面型防火涂料 防火涂料 X光安检机 隧道防火涂料施工公司 广东汤浅蓄电池 透明防火涂料 钢结构防火涂料 JS防水涂料 LED灯具生产厂家 塑钢型材 石家庄网站建设 河北防火涂料 轻钙粉 苯丙乳液 冷库造价 led手电筒 医疗信息网 led平板灯
版权所有:石家庄盛坤工程有限公司